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Enhanced algorithm efficiency for phase change convection
using a multigrid preconditioner with a SIMPLE smoother
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Abstract

This note extends previous work that used the pressure correction method SIMPLE as a preconditioner to solve two-
dimensional unsteady phase change problems. Here we examine the impact of using SIMPLE as a smoother to multigrid
for such problems.
Published by Elsevier Inc.
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In this note, a basic geometric multigrid (MG) algorithm is implemented as a preconditioner to the Jaco-
bian-Free Newton–Krylov (JFNK) solution method with a pressure-correction smoother, SIMPLE [6].
Recent work using JFNK with SIMPLE as a preconditioner to solve two-dimensional unsteady phase change
convection demonstrated that, compared to the more standard SIMPLE solution method, JFNK–SIMPLE
could converge to a chosen nonlinear tolerance criterion two orders of magnitude more quickly [3]. However,
as we extend the benchmark phase change convection problem to more complex and realistic configurations
on finer grids, unacceptable computational expense is unavoidable. Therefore, we seek additional gains in effi-
ciency within the existing structure of the JFNK–SIMPLE algorithm. Past efforts have demonstrated that
multigrid is effective as a preconditioner to the solution of nonlinear problems on fine grids [5,9]. Also, the
SIMPLE algorithm has been shown to be an effective smoother to MG for the solution of the Navier–Stokes
equations [7,8]. However, the inclusion of a phase front within natural convection changes the nature of the
equations to be solved. Applying MG within a preconditioner to these types of problems is novel.

Here, two-dimensional phase change convection is modeled with the incompressible Navier–Stokes and
energy equations in an enthalpy framework, expressed in matrix operator form as
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Q1ðvÞ þ q�1rðpÞ � fðHÞ � AðHÞv ¼ F ðvÞ ð1Þ
r � v ¼ F ðpÞ ð2Þ
Q2ðHÞ ¼ F ðHÞ; ð3Þ
where
Q1 ¼
oðÞ
ot
þr � ðvðÞÞ � 1

Re
DðÞ ð4Þ

Q2 ¼
oðÞ
ot
þr � ðvðÞÞ � 1

RePr
DsðÞ: ð5Þ
The horizontal and vertical velocities (v = u,v), pressure (p), and total enthalpy (H) make up the state vector
x = {u,v,p,H}T of dependent variables to be solved at each time step. F(x) is the set of nonlinear residuals for
x. The buoyancy forcing is the Boussinesq approximation, fðHÞ ¼ f0; Ra

Re2Pr
sðHÞg.

The nondimensionalized problem in this study is defined by constant values of the Rayleigh number
(Ra = 3000), Prandtl number (Pr = 1000), Reynolds number (Re = 1), specific heat (cP = 1), latent heat
(L = 1), and density (q = 1) to match closely with previous numerical analyses of phase change convection
[10,1]. D, $, and $Æ are the two-dimensional Laplacian, gradient, and divergence operators, respectively.
For the present pure material simulation study, the total enthalpy is related to the temperature, T, by
H = cpT + (1 � �s)L. The amount of latent heat released is determined by the solid fraction of the material,
�s, where �s = 1 is solid, �s = 0 is liquid, and 0 6 �s 6 1 is within a ‘mushy’ zone at the melting temperature,
Tm. Thus, enthalpy is piecewise smooth using temperature as a function of H,
T ¼ sðHÞ ¼
H=cp if H < cpT m

T m if cpT m 6 H 6 cpT m þ L

ðH � LÞ=cp if H > cpT m þ L:

8><
>:
The material velocity is damped in the vicinity of the solidification front using a linear relationship to �s scaled
to resolve the time scale of the moving phase front, A(H) = 1.56 · 105�s.

To be consistent with earlier work, first-order fully implicit (Backward-Euler) time discretization and cen-
tered second-order spatial differencing is used. The domain is discretized spatially using a finite volume Carte-
sian staggered fixed grid in a square cavity of equally sized cells. As boundary conditions, insulating top and
bottom walls and constant values of enthalpy on the left and right sidewalls are prescribed.

The JFNK algorithm is a nested iteration solution method ([4] provides a comprehensive explanation) that
uses inexact Newton’s methods to reduce the nonlinear residuals of (1)–(3), F(x), to a specified nonlinear tol-
erance (gnl = 1 · 10�5). Expanding F(x) using a Taylor series to first order gives
JðxkÞdxk ¼ �FðxkÞ; xkþ1 ¼ xk þ dxk; ð6Þ

where J is the Jacobian of F and k is the outer nonlinear iteration index.

GMRES, a solution method for nonsymmetric matrices, is used to generate dxk. With JFNK, a finite dif-
ference approximation of J times a vector is used to build the next element of the Krylov subspace
Jv ’ Fðxþ �vÞ � FðxÞ
�

ð7Þ
using a small perturbation, �. This is performed until the update from a linear combination of the Krylov sub-
space elements satisfy a linear tolerance
kJdxk þ FðxkÞk2

kFðxkÞk2

< gk ¼ 1� 10�2: ð8Þ
Although using Eq. (7) avoids the cost of forming J to satisfy (8), significantly nonlinear problems such as
phase change convection may require many GMRES iterations. Because each additional term of the Krylov
vector is added to a linear combination of previous terms, its storage costs can grow quickly. Thus, it is crucial
to mitigate storage requirements with an effective preconditioner.
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For this discussion, the application of the preconditioner is written in symbolic matrix form, fM�1. To avoid
operations on the residual norms, which can affect convergence, the right preconditioning option is used, and
Eq. (6) becomes
JfM�1dz ¼ �FðxÞ; ð9Þ

where dz ¼ fMdx. Eq. (9) encapsulates a multi-step process. First, evaluate JðfM�1dzÞ with Eq. (7), until the
linear tolerance is satisfied. Then evaluate dx using dx ¼ fM�1dz.

Following [7], the application of the MG-SIMPLE preconditioner is a basic V-cycle multigrid method using
a discretization coarse grid approximation [11]. Multigrid builds a solution to the original problem on a series
of coarser grids using linear stationary methods, or ‘smoothers’. These smoothers preferentially remove higher
frequency error [8], including low frequency error mapped from fine to coarse grids. The smoother used here is
the SIMPLE algorithm, which removes higher frequency error while also providing limited physical coupling.
The grid dimensions are coarsened by a factor of two and the values are restricted using a weighted average.
The same number of smoothing applications are performed after each coarsening. For this analysis, the matrix
coefficients required by SIMPLE are rediscretized on each coarsened grid. The solution correction is prolon-
gated back to finer grids using a bilinear interpolation formula and postsmoothing sweeps are applied on that
grid. A specified number of sweeps through the SIMPLE smoother are applied as presmoothing, postsmoo-

thing, and coarse grid sweeps to build fM�1dz as outlined below.
For phase change convection, the specifics of SIMPLE applied as a smoother to MG match the application

of SIMPLE as a preconditioner in Evans et al. [3]. SIMPLE is a segregated solver, whereby each dependent
variable defined by (1)–(3) is solved individually with frozen coefficients in the operators (4) and (5). As a fur-
ther simplification within the preconditioner, no phase change physics is implemented in SIMPLE and first-
order upwind spatial discretization is applied. Twenty SOR iterations and 10, 10, and 5 Gauss-Seidel iterations
through variables H, u, v, and p, respectively, produce efficient results within the SIMPLE preconditioner and
smoother.

To assess the performance of the JFNK–MG-SIMPLE algorithm, it is applied to both time dependent (a)
natural convection and (b) phase change convection as defined by Eqs. (1)–(3). Problem (a) was selected
because MG has been demonstrably successful as a preconditioner to solutions of time dependent natural con-
vection problems [7] and this establishes a baseline. Problem (b) is a benchmark for two-phase flow and entry
to more complex and realistic related problems. These analyses were performed within a square domain and
cells initially set to T = +0.5. The left and right side walls are T = �0.5 and T = +0.5, respectively, at all
times. For the natural convection problem there is no freezing, and for the phase change problem, Tm = 0.
The simulations are run to time = 200 and are displayed in Fig. 1. The thick black line denotes the T = 0 con-
tour, which for case (a) is just a reference. Buoyancy induced convection is counterclockwise and has advected
cooler material into the lower portion of the domain for both problems. For (b), phase change retards con-
vection within the frozen region and near the boundary of the phase front. The model that produced the
numerical solutions presented below was verified in [3] to be first order accurate in time using an L2 norm
of error compared to a base solution with small time step.

The time dependent natural convection problem is the same as the phase change convection problem given
by Eqs. (1)–(3), but with no latent heat release or associated velocity attenuation. Table 1 displays the CPU
time and linear to nonlinear iteration ratio for the first time step (Dt = 1) on a 1282 grid using the SIMPLE and
MG-SIMPLE preconditioners. The number of grid coarsenings is varied for MG-SIMPLE runs to illustrate
the reduction in CPU time and number of linear iterations performed as additional coarser levels are used to
build a preconditioner update. On a 1282 grid, the reduction in CPU time with the multigrid preconditioner is
almost an order of magnitude, with most of the gain due to the first coarsening.

Solutions with the MG-SIMPLE (with 4 coarsenings) and SIMPLE preconditioners are compared for a
range of grid sizes, with simulations run to time = 200 (Fig. 1a). The average ratio of linear to nonlinear iter-
ations as a function of grid size is displayed in Fig. 2a, and shows relatively weak growth with increasing grid
size for MG-SIMPLE versus SIMPLE preconditioners. We observe that the associated CPU reductions at
time = 1 (Table 1) are greater than when the simulation is run to time = 200. This may be due to the fact that
the problem is approaching steady state and the effort to achieve a converged solution for both methods is
reduced. Nonetheless, the time = 200 simulation achieves a CPU reduction of 60% on a 1282 grid.



Table 1
Performance statistics for SIMPLE and MG-SIMPLE preconditioners applied to a time dependent natural convection problem on a 1282

grid for a single time step of Dt = 1

Preconditioner # Coarsenings Ratio CPU

SIMPLE 0 71.25 9.95
MG-SIMPLE 1 23.0 1.45
MG-SIMPLE 2 16.0 1.22
MG-SIMPLE 3 15.25 1.12
MG-SIMPLE 4 15.0 ”1

For the SIMPLE preconditioner, 2 sweeps are performed, and for MG-SIMPLE, 2 presmoothing, 1 postsmoothing, and 2 SIMPLE
sweeps at coarsest level are performed. ‘Ratio’ refers to the number of linear per nonlinear iterations, and the CPU is normalized to the
fastest run.
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Fig. 1. Solutions to time dependent natural convection and phase change convection problems after time = 200 for a 642 grid. The
contours are the temperature ±0.05 from the thick black line, which denotes T = 0 for both plots and is the freezing point for (b).
(a) Natural convection; (b) phase change convection.
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Fig. 2. Ratio of average linear to nonlinear iterations as a function of grid2 size for (a) time dependent natural convection and (b) phase
change convection. The time step size is halved with grid size doubling to keep the dynamic and phase front scaling consistent.
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Table 2
Time dependent convection with solidification on a 2562 grid and time step of 0.25 at time = 200

Preconditioner # Coarsenings Ratio CPU

SIMPLE 0 63.1 2.7
MG-SIMPLE 1 27.4 1.36
MG-SIMPLE 2 19.6 1.06
MG-SIMPLE 3 18.7 ”1

CPU time is normalized to the fastest run. CPU and the ratio of linear to nonlinear iterations are displayed for simulations using the
SIMPLE preconditioner (4 sweeps) and the MG-SIMPLE preconditioner with 2 pre- and postsmoothing SIMPLE sweeps each and 4
sweeps at the coarsest grid.
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Next, all the components of the phase change problem outlined in Eqs. (1)–(3) are included and run to
time = 200 (Fig. 1b). Similar to Table 1 for natural convection, Table 2 displays normalized CPU and itera-
tion count for phase change convection on a 2562 grid. With MG-SIMPLE versus SIMPLE as the precondi-
tioner (3 grid coarsenings), the simulation is completed 63% faster. Coarsening beyond three levels did not
produce additional reductions in the CPU time. Possibly, the moving phase front is not well resolved on
the coarsest mesh for this MG preconditioner algorithm. As with the natural convection problem, the phase
change convection simulation is run for a range of grid sizes to assess the performance of the MG-SIMPLE
preconditioner with increasingly finer grids. Fig. 2b, analogous to Fig. 2a for natural convection, shows
weaker growth of the linear to nonlinear iteration ratio with increasing grid size. As a result, relative CPU
savings by using MG-SIMPLE versus SIMPLE preconditioners grows from 30% on a 1282 grid to 63% on
a 2562 grid.

We are not aware of any application of multigrid methods to time dependent phase change problems. Since
the partial differential equation systems representing these problems can have discontinuities and exhibit
hyperbolic behavior they may render multigrid methods ineffective. However, by incorporating a basic mul-
tigrid method within a SIMPLE preconditioned JFNK algorithm for these equations, the number of function
evaluations to build an approximate update and the associated CPU time are reduced. This effect becomes
more pronounced on finer grids. Although parameters such as pre-, post-, and coarse grid sweeps were chosen
to minimize the CPU time using MG-SIMPLE, further adjustment could improve results. Also, the multigrid
method implemented here is rather basic. Using more sophisticated coarse grid matrices, restriction and/or
prolongation operators designed for the more complex equations could yield more dramatic results. For
example, a Galerkin method [2] may better translate phase change information from the finer grid.
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